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Monte Carlo simulation of topological defects in the nematic liquid crystal matrix
around a spherical colloid particle
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We use a Monte Carlo algorithm to simulate the director field around a spherical inclusion in a uniform
nematic liquid crystal matrix. The resulting structure crucially depends on the relative strength of the nematic
bulk elasticity and the director anchoring on the particle surface. When this anchoring is weak, the director
field perturbations are small and have quadrupolar symmetry. With increasing strength of anchoring two
topologically nontrivial situations are possible: a dipolar configuration with a satellite point db&stdehoy
near the particle pole, or a quadrupolar configuration with a “Saturn ring” of disclination around the particle
equator[S1063-651X97)01311-1

PACS numbsefs): 61.30.Jf, 61.30.Gd, 64.70.Md, 61.20.Ja

[. INTRODUCTION cluding the main equations used for the simulations. Section
. : : . .1l describes the numerical method of simulated annealing,
. The problem Of.COIIO'd particles introduced mtq anematicy, hich we used in the computation. Section IV presents the
liquid crystal matrix has recently attracted attention and hagegits of the calculations and a critical discussion of their

produced different views on the problem. A closed innefjnerpretation. In the final Sec. V we conclude the work and

surface with sufficiently strong apchoring creates a topologiyescribe possible experiments.

cal mismatch of the director field between the director on

the particle surface and the uniform director at large dis-

tances. This mismatch leads to topological defects, i.e., re- IIl. BASIC CONCEPT

gions where the liquid crystal order and the continuity of  Nematic liquid crystals can be described on the con-
n(r) break down. A connected closed surface with homeotinyum level by a director fieldi(r) which is the average
tropic boundary conditionéhe molecules and, therefore, the gjrection of a small sample of molecules around the point
directorn are locked perpendicular to the surfacepresents  Since n represents only a direction, the modulus is fixed,
a point topological charg&=1. Since the overall sample [2=1. The inversion of a nematic molecule does not change
with a uniform far field(i.e., n is constant at a distant outer its physical properties. This fact is reflected in the further
surface has the topological chargd=0, the charge pro- symmetry requirement=—n, which makes nematics dif-
duced by the inner surface must be balanced by an addition&rent from a simple vector-field system.

opposite charge. There are two basic possibilities. The as- Provided that changes in the director field are on a much
sumption that a spherical particle in a nematic represents larger length scale than the molecular size, the free energy
guadrupolar symmetry means that the director field should

then be quadrupolar as wéll,2]. Hence the topological mis- i T
match is balanced by a loop of a disclination with linear i,
strengthm= —1/2 and overall point charghl=—1 in the
equatorial plane of the particl@ “Saturn ring,” see Fig.
1(b)]. The other possibility is a dipolar configuration with a
satellite point defect wittiN=—1 near one of the particle
poles, recently proposed 8], see Fig. Ic). Both situations

are supported by good theoretical arguments and here we
shall employ Monte Carlo simulations to examine the advan-
tages and disadvantages of both structures.

The conclusion of this work is that both structures are
possible. Which configuration finally forms is to a large ex-
tent determined by the early formation or cooling process.
Once one of the configurations is realized, it remains quite
stable. The theoretical comparison of the energy of both
states critically depends on the core energies of the disclina- (b)
tion ring and the point defect. In the simulation it could only
be very crudely accounted for and further investigations are FG. 1. (a) The director field in the case of weak anchoring. As
needed to get a better estimate. the effective anchoring strength increases, there are two possibili-

The article is organized as follows. The next section deties: the liquid crystal can form a quadrupolar Saturn ring structure
scribes the key theoretical points behind this problem, in{b) or a dipolar structure with a satellite defdcj.
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density f4 due to bulk elastic deformations of the nematic ents. The volume integration to obtain the bulk free energy
can be written down as Fq=Jf4dV from Eq.(1) does not extend over the volume of
the disclination or the point defect core, but a certain core
1 ., 1o R 1 . energyE, has to be added to the free energy for this region
—_ . 2, . 2, 2 c . ) oo -
fd_zKl(V n)=+ 2 Ka(n-Vxn)=+ 2 Ka(nXV Xn)%, (see further discussion of this issue in Seg¢. V
(N

where the Frank elastic constaits, K,, andK; describe Ill. NUMERICAL METHOD
the energy increase due to splay, twist, and bend of the di- pying the last few decades Monte Carlo simulations

rector, respectively. '_I'he th_ree elastic constants are of thgave proven to be a powerful tool for the optimization of
same order of magnitude in many practical cases and Wgymplex problems with a large number of degrees of free-
employ the one-constant approximation of the Frank elastigiom_ |n our case there is a certain number of grid points in
energy, space, which represent a discrete version of the director field,
and at each of these points the director is described by the
1 A . : i
fy==K[(div A)2+ (curl A)2]. 2) angleg. Th|s'angle can tgke arbitrary vglues petweefr/Z
2 and /2, which makes it even theoretically impossible to
calculate the free energy of all possible configurations.

Let us note here that Eq) is slightly different from the We used the method of simulated annealing, which be-
familiar 3K(VR)?, which is obtained by the integration by |ongs to the class of Metropolis algorithms, to find the state
parts[4]. The presence of topological defects with their coreof the lowest energy. Instead of comparing different configu-
surfaces and, as in our case, the particle itself, makes th@tions, one(arbitrary director distribution is taken and the
surface terms emerging from this integration ambiguous—ofree energyF calculated. A random point of the configura-
at least not straightforward. We have chosen not to discusgon is then selected, altered by a random amaysiand the
the surfacelike elastic constanks, and K3, but strictly  energy difference between old and new configuratiof
speaking, their contribution on the cores of topological decalculated. IfAF is negative, i.e., the altered director field
fects should also be considered. has a lower energy than the unaltered one, the move is ac-

In the case of a spherical particle in a nematic, which iscepted. If AF is positive, i.e., the change of the director
uniform far away from the objedtaligned parallel to th&  increases the energy, the move is not immediately discarded
axis), the directon can be expressg:d more conveniently inpyt accepted with a probability & 27, wherey (an effec-
terms of the angle it makes with ttzeaxis of the spherical  tjve temperaturgis a value to be fixed during the calculation.
coordinate systemg(r, ¢, 6), or rather(r, 6) since there is  This procedure is inspired by the way a real liquid crystal
an obvious azimuthal symmetry in the problem. We assumeeaches its thermal equilibrium. Starting from the isotropic
homeotropic boundary conditions where the director has tphase, where the direction of the molecules is arbitrary, it is
be perpendicular to the surface of the particle. A deviatiorcooled down into the anisotropic liquid crystalline phase.
from this ideal orientation is penalized by the surface energyrhis happens at finite temperatures where certain fluctuations
[5] are inherent in the system, depending on the temperature.
Therefore states which do not have the lowest energy are
allowed and their probability is given by the Boltzmann fac-
tor e 477%T The simulation scheme mimics this behavior
and the factory is just an artificial inverse temperature.
wherew is the surface normal and is the anchoring energy. Without permitting the moves that increase the energy, the
The relative strength of the director anchoring compared t@alculation would end up at the nearest local minimum in-
the bulk elastic energy can be expressed by the dimensiostead of reaching the desired global equilibrium.
less parameteWR/K, whereR is a typical length scale of It is preferable to start using large changes3ddt a high
the problem(the radius of the particje temperature and then to cool it gradually down to zero tem-

In the regime of weak-anchoring conditioM§R/K<1, perature. It must be emphasized that the “temperature” in
the bulk elasticity prevails and the director field is only this calculation scheme has no real physical meaning. The
slightly distorted from its uniform orientation and does notdirector is independent of any real temperature; any such
have any disclination or point defecfsee Fig. 1a)]. The dependence is contained in the order parameter of the system
texture can be calculated analytically2] and the Q=Q(T).
solution satisfying the boundary conditiong8=(WR To reflect the azimuthal symmetry of the problem in the
4K)(R/r)3 sin 26, has the expected quadrupolar symmetry.calculation, we transformed Edql) into spherical coordi-

In order to investigate the director field under stronger-nates, which then becomes independent of the azimuthal
anchoring conditions WR/K>1), when the surface en- angle ¢. Furthermore, an inverted radigs=1/r was used.
forces the topological defects, we employed a numericalhis has two advantages: first, it enables the use of boundary
Monte Carlo algorithm to calculate(r). conditions at infinity(points with £&=0). Secondly, in the

If there are defects present in the system, the bulk freeliscretized form, it produces a high density of grid points
energy density Eq1) becomes singular and the description close to the particle surface, where most of the director
in terms of a director field breaks down in the core region.changes occur and few grid points far from the particle,
The liquid crystal “melts” locally into the isotropic phase where the director variations are less relevant.
since this is energetically preferable to large director gradi- The free energy derived from Edl) depends on the

1
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FIG. 2. The four surrounding meshes are used to calculate the FIG. 3. The distance of the satellite from the center of the par-
change in the free energy after varying the director at paify oy  ticle (curves) and the radius of the disclination rirfgurver) and
the amountAg. the virtual disclination inside the particleurvew) in terms of the
particle radius depending on the parameter WR/'K. The error

angle 8 and on its first derivatives with respect foand 6. bars are slightly larger than the point distance of the grid.

Since the derivatives are calculated by the nearest neighbors,
there is no need to evaluate the energy in the whole systegtable with respect to the perturbations of the algorithm. This
after each iteration. It is sufficient to calculate the energyimplies for the real system that the form of the director field
only in the region where it is altered by the change of theis sensitive to the startup state. The stability of the two dif-
director. Some care is necessary since every symmetric foferent solutions is also clearly the case in a real system. Even
mula to evaluate a derivative at poi@ 6) is independent of if the system has the Saturn ring texture whereas the satellite
the value at this point. In order to avoid this problem, thewould be energetically favorabl@r vice versa the transi-
four meshes surrounding the point in question were used tgon between the states is hardly possible. In order to shrink
evaluate the free energy, where the angle in the center of @ a point defect, the disclination loop must move from the
mesh was calculated by the average of the four angles sugquatorial plane to one of the poles, but the intermediate
rounding this poin{see Fig. 2 stage of the ring, halfway up or down the particle, is ener-
Further care has to be taken when the difference betweegetically very costly, representing a high and wide barrier for
two directors is calculated. Due to the equivalence of thahe transition.
statesn and —n, in each azimuthal cross section, the angle At the important transition region from strong to weak
is the same ag+km, wherek is an integer. This has to be anchoring there is even a third class of solutions possible, the
taken into account when other values are calculated. Th@eak-anchoring distribution(r) without any topological de-
angular difference between two neighboring directors mustects, Fig. 1a), along with the two main topologically non-
always be smaller than/2. The same applies to the averagetrivial textures.
of two neighboring directors. For example, the average of The distancea, of the satellite defect from the center of
—m/3 and7/3 is not O butw/2. the particle and the radiwg of the disclination ring can act
The factory, which determines the fraction of accepted as order parameters of the transition from strong to weak
moves which increase the energy, was chosen to be small ahchoring. The equilibrium values ef, anda, were deter-
the beginning of the run and then increased during run timemined by running several simulations with the same param-
The maximum change for an angle in one step was chosen ter WR'K. There was usually no unique solution, i.e., the
be + /2 at the beginning, when the field is random, andposition of the defect and the radius of the disclination loop
then decreased gradually, when the field was getting morgaried slightly. Therefore we plotted an energy vs distance
and more ordered. The acceptance rate depends very mughrve and determined the equilibrium radius by taking the
on these two values and there is no real rule how to choos@terpolated minimum of this curve. The error of this method
them, but experience shows that the acceptance rate @ roughly given by the distance of two neighboring grid
moves in Monte Carlo simulations should be around 50% tgoints, also because the exact location of the core is unde-
obtain the best results. termined(it is “somewhere” between two grid poinks
The calculations were performed on a DEC Alpha 600 The variation ofa, andag with the control ratioV R/K is
and a typical calculation with a grid size of 8240 points  presented in Fig. 3. Figure 4 shows the energy of the three
needed several hours. main configurations depending on the relative anchoring
strengthWR/K. The energy values obtained from the simu-
lations were not continuous at the transition from weak to
strong anchoring. This is not physicé&he energy cannot
The simulations showed that the director pattern has ngump) and the values were adjusted by adding a constant
single preferred configuration. Both satellite and ring struc-value to the energies of the satellite and the Saturn ring struc-
ture[Figs. 1b) and 1c)] are possible outcomes of the simu- ture in such a way that there is a continuous increase in the
lation. Once their basic structure has evolved they remairnergy. This has a physical reason: the free energy calculated

IV. RESULTS
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9 7 lowing one to eliminate the poorly controlled thermody-
6 ] (w), . ) namic energy density. of an isotropic melt. An interested
] . * reader may refer tp7] for an additional discussion.

74 7 The core effects increase the energy of both the Saturn
o] '/ /"""’—" (s) ring and the satellite structure. But they also affect the en-
] ,/ ergy of the weak-anchoring field. When the “virtual” discli-

5 nation ring radius becomes of ord®; a real disclination

' starts to appear at the surface of the sphere. Therefore the
i energy of this field dashed line in Fig. Awill also continu-
371 ously increase to a higher value. Altogether it can be as-

Adjusted energy (arb. units)

sumed that the effect of the defect core energy shifts the
transition to a somewhat higher value of the control param-

14— . ; ' ' ' eterw=WR/K.
0 » 0 6 80 100 The upper curve in Fig. 3, labeleds)( represents the
WR/K . . .
distance of the satellite defect from the particle cerdefR.

FIG. 4. The energies of the satellifeurves) and Saturn ring At w—o the distance of the satellite from the center has,
fields (curver) adjusted so that the transition from weak-anchoringaccording to the simulation, a value af~1.22R which is

texture(curvew) takes place without a jump in the free energy. somewhat larger than the estimate[8f. On decreasing the
effective anchoring it jumps at a critical valwe~7 from

is merely the distortion free energy, i.e., the elastic energy ofis~1.0/R down to zero. For lower values there was no
the bulk 74, and the anchoring energy at the particle surfacdonger a minimum in the energy-distance plot, i.e., the satel-
Fs, Eq. (3). There should be an additional term, the discli- lite configuration becomes unstable and the weak-anchoring
nation core energy mentioned earlier, which could only bePattern favorable. At the same time the overall symmetry of
partly accounted fofsee below. The simulation treats defect the director field changes from the dipolar to quadrupolar.
cores as a melted object of the size of a mesh with a homolthe jump inag(w) and the clear break in the corresponding

geneous free energy density given by the values of the suenergy 7(w) indicate that the transition is of first order.
rounding director. The idea is that it is preferable for theHowever, the phase transition from the satellite configuration

nematic liquid crystal to “melt” rather than to sustain large to the weak-anchoring configuration undergoes a symmetry
director gradients. This does not really reflect the situation irchange from dipolar to quadrupolar, represented by the sym-
real nematics, which is somewhat more complex and inmetry groupsD.., and C..,, respectively[11]. The order
cludes the coupling of the directdr with the order param- parameter of this transition can be easily identified: it iszhe
eter distortionsVQ [6—8]. In the case of the satellite defect, componentp, of a vectorp connecting the particle and the
a so-called hyperbolic monopole, the spherical symmetrynonopole. The expansion of the free energy in terms of the
disappears and it is even possible that a hedgehog does reall order parameter cannot contain a cubic t@dn(the
really exist on a small length scale but it consists of a smalfree energy is a scalar, whitu*;3 changes sign on inversinn
disclination ring[9]. In summary, it is impossible to account Therefore, from these underlying symmetry reasons, the
for these subtle effects in the simulation framework we areransition seems to be of second order. One possibility to
using, which does not include the spatially varying orderexplain the jump in the order parameter and the break point
parameter. in the energy curve at the absence of a cubic term in the
The core region also introduces a new length s¢fde  Landau expansion of the free energy is to assume that the
core radiug ;) to the system, depending on the liquid crystal coefficient of the fourth-order term is negative and a sixth-
material constants. The satellite defect seems preferable farder term has to be taken into account, i.e., the Landau
large particles since the Saturn ring changes its size with thgynansion is of the fornF= la(w—w*)p2—ibpi+Lep?.
partlclle radius. A straight disclination Iméohlrector field The transition from a Saturn ring structure, the curig (
Nx=sin $/2; n,=cos¢/2; n,= 0 for the defect line along the j, Fig 3, seems to occur at a slightly higher value of the
z axis has thze elastic energy per unit length of ool parametew~11. At this point the combined curve
E=K Inro/rc+mtcec (see, for example[10]), with ro the  of the satellite ring and the virtual disclination inside the
outer cutoff radius and the core energy density, which particle has the value, /R=1, i.e., the loop is on the surface
leads for a ring of radiuR to an energy estimate d&ny  of the sphere. The radius of the ring for infinite anchoring is
«2mKR In Rip.+2wR(mpZec) whereas for the satellite de- glightly smaller than the estimate ], a,~1.13. Disclina-
fect one roughly obtain& el KR+ Ecore from consider-  tion radii ofa,< 1 do not represent real disclination rings but
ing a hedgehog point defectdirector field n,=1;  “virtual” disclinations inside the particle. They were fitted
ny,=n,=0), with a size-independent total core energyusing an approximate formula of the director field with a
Ecore= 37T 3¢ . However, the relative value of the two core Saturn ring[2],
energy contributions is very difficult to estimate. For the line
defect one has to balance the elastic energy derl’@né
against the energy density of the meilt,. This gives
p§~ K/e. and the disclination core energy per unit length
mpzec~mK. On the other hand, for the point defect the The transition is continuous in the order parameter and in
47K%¥%_ Y2 notal- the free energy. This implies that the system undergoes a

1 sin 20
B= 60— = arctan (4)

2 (a,/r)3+cos ¥’

similar argument would providg .o~
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second-order phase transition. Again, from symmetry argu- The dipolar satellite defect texture would explain the
ments this cannot be the case: the transition from the Saturalignment of particles in strings along the director lines ob-
ring is symmetry preserving. Both the ring and the weakserved in some experimer{t3,13|, whereas the quadrupolar
anchoringn(r) have quadrupolar symmetry and belong to thestructure would lead to repulsion along the director and at-
same groufD..;,. It is a well known fact that phase transi- traction at oblique anglegl4,15 leading to less structured
tions with preserved symmetry must be of first ordeny.,  aggregates also frequently obserj&é]. On the other hand,
gas-liquid transitioy which we do not see in our results. the presence of other particles could distort the symmetry
Therefore it seems that there is no phase transition as sucinough to favor the dipolar structure with a ring displaced
The disclination ring simply shrinks and, instead of beingfom the equator and, therefore, explain the string alignment.
outside the sphere, a virtual ring continues to exist inside the ¢ gimylations show a first-order phase transition from a
sphere without any other changes in the system. satellite defect to the weak-anchoring fieldVetR/IK~7 or
slightly higher. The transition from the Saturn ring to the
weak-anchoring field occurs at somewhat higher values

We examined the director structure around a sphericaVRIK~11. The disclination disappears from the liquid
particle with a Monte Carlo simulation, depending on thecrystal but apparently continues to exist as a virtual ring
anchoring energy of the nematic at the particle surfacénside the particle at any nonzews. From symmetry argu-
WR/K. In the region of strong-anchoring conditions ments it can be conjectured that this change is not a real
(WR/K>10) the director structure seems to depend on théransition but rather a continuous process of decreasing
history of the sample. If a preorder of quadrupolar structurea,(w).
existed, it will tend to remain in this symmetry and develop The experimental examination of the director structure
a Saturn ring texture. If this symmetry was not existent, butaround a colloid particle with an optical microscope is diffi-
a dipolar prealignment configuration was enforced, the satekylt since samples with a reasonable thickness are turbid due
lite structure will appear. Both patterns seem to be quiteg the high thermal fluctuations in nematics. An appropriate
stable once they have formed and thermal fluctuations mlghhethod of exp|0ring even thick Samp|es is the method of
not be strong enough to change the state to its global minifreeze fracturing or tomography. The sample is frozen and
mum, whatever it is, since the intermediate stage, a ring outan be cut in thin slices in the region of interest to examine
of the equatorial plane, is punished by a high free energythe director structurd17]. It is particularly interesting to
The question of which of the states has the lower energgxamine the influence of the cooling method, cooling rates,
cannot be answered unambiguously. Too little is knownand how symmetry breaking effedtsuch as the existence of

about the energy inherent in the core of a disclingtion ring Olther particles, electric and magnetic figldhange the di-
a monopole defect to be able to give a good estimate for theector pattern.

additional core energy. The scaling of the Saturn ring energy
might imply that this structure is less favorable for large

particles[3]. The conclusion that in the case of small par-

ticles the Saturn ring is preferable was also reached by
Lubenskyet al. [12]. The same holds of course for weak The authors have benefited from discussions with M.

anchoring, for example, close to the melting point of a nem-Warner, D. Lu, and P. D. Olmsted. We appreciate the chance
atic liquid crystal where bubbles of isotropic material form given to us by the authors 03] to see their paper prior to its

V. CONCLUSION
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