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Monte Carlo simulation of topological defects in the nematic liquid crystal matrix
around a spherical colloid particle

R. W. Ruhwandl and E. M. Terentjev
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom

~Received 24 March 1997!

We use a Monte Carlo algorithm to simulate the director field around a spherical inclusion in a uniform
nematic liquid crystal matrix. The resulting structure crucially depends on the relative strength of the nematic
bulk elasticity and the director anchoring on the particle surface. When this anchoring is weak, the director
field perturbations are small and have quadrupolar symmetry. With increasing strength of anchoring two
topologically nontrivial situations are possible: a dipolar configuration with a satellite point defect~hedgehog!
near the particle pole, or a quadrupolar configuration with a ‘‘Saturn ring’’ of disclination around the particle
equator.@S1063-651X~97!01311-1#

PACS number~s!: 61.30.Jf, 61.30.Gd, 64.70.Md, 61.20.Ja
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I. INTRODUCTION

The problem of colloid particles introduced into a nema
liquid crystal matrix has recently attracted attention and
produced different views on the problem. A closed inn
surface with sufficiently strong anchoring creates a topolo
cal mismatch of the director fieldn̂ between the director on
the particle surface and the uniform director at large d
tances. This mismatch leads to topological defects, i.e.,
gions where the liquid crystal order and the continuity
n̂~r ! break down. A connected closed surface with hom
tropic boundary conditions~the molecules and, therefore, th
directorn̂ are locked perpendicular to the surface! represents
a point topological chargeN51. Since the overall sampl
with a uniform far field~i.e., n̂ is constant at a distant oute
surface! has the topological chargeN50, the charge pro-
duced by the inner surface must be balanced by an additi
opposite charge. There are two basic possibilities. The
sumption that a spherical particle in a nematic represen
quadrupolar symmetry means that the director field sho
then be quadrupolar as well@1,2#. Hence the topological mis
match is balanced by a loop of a disclination with line
strengthm521/2 and overall point chargeN521 in the
equatorial plane of the particle@a ‘‘Saturn ring,’’ see Fig.
1~b!#. The other possibility is a dipolar configuration with
satellite point defect withN521 near one of the particle
poles, recently proposed in@3#, see Fig. 1~c!. Both situations
are supported by good theoretical arguments and here
shall employ Monte Carlo simulations to examine the adv
tages and disadvantages of both structures.

The conclusion of this work is that both structures a
possible. Which configuration finally forms is to a large e
tent determined by the early formation or cooling proce
Once one of the configurations is realized, it remains qu
stable. The theoretical comparison of the energy of b
states critically depends on the core energies of the disc
tion ring and the point defect. In the simulation it could on
be very crudely accounted for and further investigations
needed to get a better estimate.

The article is organized as follows. The next section
scribes the key theoretical points behind this problem,
561063-651X/97/56~5!/5561~5!/$10.00
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cluding the main equations used for the simulations. Sec
III describes the numerical method of simulated anneali
which we used in the computation. Section IV presents
results of the calculations and a critical discussion of th
interpretation. In the final Sec. V we conclude the work a
describe possible experiments.

II. BASIC CONCEPT

Nematic liquid crystals can be described on the co
tinuum level by a director fieldn̂~r ! which is the average
direction of a small sample of molecules around the poinr .
Since n̂ represents only a direction, the modulus is fixe
n̂251. The inversion of a nematic molecule does not chan
its physical properties. This fact is reflected in the furth
symmetry requirementn̂52n̂, which makes nematics dif
ferent from a simple vector-field system.

Provided that changes in the director field are on a m
larger length scale than the molecular size, the free ene

FIG. 1. ~a! The director field in the case of weak anchoring. A
the effective anchoring strength increases, there are two poss
ties: the liquid crystal can form a quadrupolar Saturn ring struct
~b! or a dipolar structure with a satellite defect~c!.
5561 © 1997 The American Physical Society
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5562 56R. W. RUHWANDL AND E. M. TERENTJEV
density f d due to bulk elastic deformations of the nema
can be written down as

f d5
1

2
K1~“•n̂!21

1

2
K2~ n̂•“3n̂!21

1

2
K3~ n̂3“3n̂!2,

~1!

where the Frank elastic constantsK1 , K2 , andK3 describe
the energy increase due to splay, twist, and bend of the
rector, respectively. The three elastic constants are of
same order of magnitude in many practical cases and
employ the one-constant approximation of the Frank ela
energy,

f d5
1

2
K@~div n̂!21~curl n̂!2#. ~2!

Let us note here that Eq.~2! is slightly different from the
familiar 1

2 K(“n̂)2, which is obtained by the integration b
parts@4#. The presence of topological defects with their co
surfaces and, as in our case, the particle itself, makes
surface terms emerging from this integration ambiguous—
at least not straightforward. We have chosen not to disc
the surfacelike elastic constantsK24 and K13, but strictly
speaking, their contribution on the cores of topological d
fects should also be considered.

In the case of a spherical particle in a nematic, which
uniform far away from the object~aligned parallel to theẑ
axis!, the directorn̂ can be expressed more conveniently
terms of the angle it makes with theẑ axis of the spherica
coordinate system,b(r ,f,u), or ratherb(r ,u) since there is
an obvious azimuthal symmetry in the problem. We assu
homeotropic boundary conditions where the director has
be perpendicular to the surface of the particle. A deviat
from this ideal orientation is penalized by the surface ene
@5#

Fs52
1

2
W R ~ n̂•n̂!2dS, ~3!

wheren̂ is the surface normal andW is the anchoring energy
The relative strength of the director anchoring compared
the bulk elastic energy can be expressed by the dimens
less parameterWR/K, whereR is a typical length scale o
the problem~the radius of the particle!.

In the regime of weak-anchoring conditionsWR/K!1,
the bulk elasticity prevails and the director field is on
slightly distorted from its uniform orientation and does n
have any disclination or point defects@see Fig. 1~a!#. The
texture can be calculated analytically@2# and the
solution satisfying the boundary conditions,b5(WR/
4K)(R/r )3 sin 2u, has the expected quadrupolar symmet
In order to investigate the director field under strong
anchoring conditions (WR/K@1), when the surface en
forces the topological defects, we employed a numer
Monte Carlo algorithm to calculaten̂~r !.

If there are defects present in the system, the bulk f
energy density Eq.~1! becomes singular and the descripti
in terms of a director field breaks down in the core regio
The liquid crystal ‘‘melts’’ locally into the isotropic phas
since this is energetically preferable to large director gra
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ents. The volume integration to obtain the bulk free ene
Fd5* f ddV from Eq.~1! does not extend over the volume o
the disclination or the point defect core, but a certain c
energyEc has to be added to the free energy for this reg
~see further discussion of this issue in Sec. V!.

III. NUMERICAL METHOD

During the last few decades Monte Carlo simulatio
have proven to be a powerful tool for the optimization
complex problems with a large number of degrees of fr
dom. In our case there is a certain number of grid points
space, which represent a discrete version of the director fi
and at each of these points the director is described by
angleb. This angle can take arbitrary values between2p/2
and p/2, which makes it even theoretically impossible
calculate the free energy of all possible configurations.

We used the method of simulated annealing, which
longs to the class of Metropolis algorithms, to find the st
of the lowest energy. Instead of comparing different config
rations, one~arbitrary! director distribution is taken and th
free energyF calculated. A random point of the configura
tion is then selected, altered by a random amountDb and the
energy difference between old and new configurationDF
calculated. IfDF is negative, i.e., the altered director fie
has a lower energy than the unaltered one, the move is
cepted. If DF is positive, i.e., the change of the direct
increases the energy, the move is not immediately discar
but accepted with a probability ofe2gDF, whereg ~an effec-
tive temperature! is a value to be fixed during the calculatio
This procedure is inspired by the way a real liquid crys
reaches its thermal equilibrium. Starting from the isotrop
phase, where the direction of the molecules is arbitrary, i
cooled down into the anisotropic liquid crystalline phas
This happens at finite temperatures where certain fluctuat
are inherent in the system, depending on the tempera
Therefore states which do not have the lowest energy
allowed and their probability is given by the Boltzmann fa
tor e2DF/kbT. The simulation scheme mimics this behavi
and the factorg is just an artificial inverse temperature
Without permitting the moves that increase the energy,
calculation would end up at the nearest local minimum
stead of reaching the desired global equilibrium.

It is preferable to start using large changes ofb at a high
temperature and then to cool it gradually down to zero te
perature. It must be emphasized that the ‘‘temperature’
this calculation scheme has no real physical meaning.
director is independent of any real temperature; any s
dependence is contained in the order parameter of the sy
Q5Q(T).

To reflect the azimuthal symmetry of the problem in t
calculation, we transformed Eq.~1! into spherical coordi-
nates, which then becomes independent of the azimu
anglef. Furthermore, an inverted radiusj51/r was used.
This has two advantages: first, it enables the use of boun
conditions at infinity~points with j50!. Secondly, in the
discretized form, it produces a high density of grid poin
close to the particle surface, where most of the direc
changes occur and few grid points far from the partic
where the director variations are less relevant.

The free energy derived from Eq.~1! depends on the
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56 5563MONTE CARLO SIMULATION OF TOPOLOGICAL . . .
angleb and on its first derivatives with respect toj and u.
Since the derivatives are calculated by the nearest neighb
there is no need to evaluate the energy in the whole sys
after each iteration. It is sufficient to calculate the ene
only in the region where it is altered by the change of
director. Some care is necessary since every symmetric
mula to evaluate a derivative at point~j,u! is independent of
the value at this point. In order to avoid this problem, t
four meshes surrounding the point in question were use
evaluate the free energy, where the angle in the center
mesh was calculated by the average of the four angles
rounding this point~see Fig. 2!.

Further care has to be taken when the difference betw
two directors is calculated. Due to the equivalence of
statesn̂ and2n̂, in each azimuthal cross section, the angleb
is the same asb1kp, wherek is an integer. This has to b
taken into account when other values are calculated.
angular difference between two neighboring directors m
always be smaller thanp/2. The same applies to the avera
of two neighboring directors. For example, the average
2p/3 andp/3 is not 0 butp/2.

The factorg, which determines the fraction of accepte
moves which increase the energy, was chosen to be sm
the beginning of the run and then increased during run ti
The maximum change for an angle in one step was chose
be 6p/2 at the beginning, when the field is random, a
then decreased gradually, when the field was getting m
and more ordered. The acceptance rate depends very m
on these two values and there is no real rule how to cho
them, but experience shows that the acceptance rat
moves in Monte Carlo simulations should be around 50%
obtain the best results.

The calculations were performed on a DEC Alpha 6
and a typical calculation with a grid size of 803240 points
needed several hours.

IV. RESULTS

The simulations showed that the director pattern has
single preferred configuration. Both satellite and ring str
ture @Figs. 1~b! and 1~c!# are possible outcomes of the sim
lation. Once their basic structure has evolved they rem

FIG. 2. The four surrounding meshes are used to calculate
change in the free energy after varying the director at point (i , j ) by
the amountDb.
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stable with respect to the perturbations of the algorithm. T
implies for the real system that the form of the director fie
is sensitive to the startup state. The stability of the two d
ferent solutions is also clearly the case in a real system. E
if the system has the Saturn ring texture whereas the sate
would be energetically favorable~or vice versa!, the transi-
tion between the states is hardly possible. In order to sh
to a point defect, the disclination loop must move from t
equatorial plane to one of the poles, but the intermed
stage of the ring, halfway up or down the particle, is en
getically very costly, representing a high and wide barrier
the transition.

At the important transition region from strong to wea
anchoring there is even a third class of solutions possible,
weak-anchoring distributionn̂~r ! without any topological de-
fects, Fig. 1~a!, along with the two main topologically non
trivial textures.

The distanceas of the satellite defect from the center o
the particle and the radiusar of the disclination ring can ac
as order parameters of the transition from strong to w
anchoring. The equilibrium values ofas andar were deter-
mined by running several simulations with the same para
eter WR/K. There was usually no unique solution, i.e., t
position of the defect and the radius of the disclination lo
varied slightly. Therefore we plotted an energy vs distan
curve and determined the equilibrium radius by taking
interpolated minimum of this curve. The error of this meth
is roughly given by the distance of two neighboring gr
points, also because the exact location of the core is un
termined~it is ‘‘somewhere’’ between two grid points!.

The variation ofar andas with the control ratioWR/K is
presented in Fig. 3. Figure 4 shows the energy of the th
main configurations depending on the relative anchor
strengthWR/K. The energy values obtained from the sim
lations were not continuous at the transition from weak
strong anchoring. This is not physical~the energy canno
jump! and the values were adjusted by adding a cons
value to the energies of the satellite and the Saturn ring st
ture in such a way that there is a continuous increase in
energy. This has a physical reason: the free energy calcul

he FIG. 3. The distance of the satellite from the center of the p
ticle ~curves! and the radius of the disclination ring~curve r ! and
the virtual disclination inside the particle~curvew! in terms of the
particle radius depending on the parameterw5WR/K. The error
bars are slightly larger than the point distance of the grid.
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5564 56R. W. RUHWANDL AND E. M. TERENTJEV
is merely the distortion free energy, i.e., the elastic energ
the bulkFd , and the anchoring energy at the particle surfa
Fs , Eq. ~3!. There should be an additional term, the disc
nation core energy mentioned earlier, which could only
partly accounted for~see below!. The simulation treats defec
cores as a melted object of the size of a mesh with a ho
geneous free energy density given by the values of the
rounding director. The idea is that it is preferable for t
nematic liquid crystal to ‘‘melt’’ rather than to sustain larg
director gradients. This does not really reflect the situation
real nematics, which is somewhat more complex and
cludes the coupling of the directorn̂ with the order param-
eter distortions“Q @6–8#. In the case of the satellite defec
a so-called hyperbolic monopole, the spherical symme
disappears and it is even possible that a hedgehog doe
really exist on a small length scale but it consists of a sm
disclination ring@9#. In summary, it is impossible to accoun
for these subtle effects in the simulation framework we
using, which does not include the spatially varying ord
parameter.

The core region also introduces a new length scale~the
core radiusr c! to the system, depending on the liquid crys
material constants. The satellite defect seems preferable
large particles since the Saturn ring changes its size with
particle radius. A straight disclination line~director field
nx5sinf/2; ny5cosf/2; nz50 for the defect line along the
z axis! has the elastic energy per unit length
E5K ln ro /rc1prc

2«c ~see, for example,@10#!, with r o the
outer cutoff radius and«c the core energy density, whic
leads for a ring of radiusR to an energy estimate ofEring

}2pKR ln R/rc12pR(prc
2«c) whereas for the satellite de

fect one roughly obtainsEsatellite}KR1Ecore from consider-
ing a hedgehog point defect~director field nr51;
nf5nu50!, with a size-independent total core ener

Ecore5
4
3 pr c

3«c . However, the relative value of the two co
energy contributions is very difficult to estimate. For the li
defect one has to balance the elastic energy densityK/rc

2

against the energy density of the melt,«c . This gives
rc

2;K/«c and the disclination core energy per unit leng
prc

2«c;pK. On the other hand, for the point defect th

similar argument would provideEcore;
4
3 pK3/2«c

21/2, not al-

FIG. 4. The energies of the satellite~curve s! and Saturn ring
fields ~curver ! adjusted so that the transition from weak-anchor
texture~curvew! takes place without a jump in the free energy.
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lowing one to eliminate the poorly controlled thermod
namic energy density«c of an isotropic melt. An interested
reader may refer to@7# for an additional discussion.

The core effects increase the energy of both the Sa
ring and the satellite structure. But they also affect the
ergy of the weak-anchoring field. When the ‘‘virtual’’ discli
nation ring radius becomes of orderR, a real disclination
starts to appear at the surface of the sphere. Therefore
energy of this field~dashed line in Fig. 4! will also continu-
ously increase to a higher value. Altogether it can be
sumed that the effect of the defect core energy shifts
transition to a somewhat higher value of the control para
eterw5WR/K.

The upper curve in Fig. 3, labeled (s), represents the
distance of the satellite defect from the particle center,as /R.
At w→` the distance of the satellite from the center h
according to the simulation, a value ofas;1.22R which is
somewhat larger than the estimate of@3#. On decreasing the
effective anchoring it jumps at a critical valuew;7 from
as;1.07R down to zero. For lower values there was n
longer a minimum in the energy-distance plot, i.e., the sa
lite configuration becomes unstable and the weak-ancho
pattern favorable. At the same time the overall symmetry
the director field changes from the dipolar to quadrupo
The jump inas(w) and the clear break in the correspondi
energyF(w) indicate that the transition is of first orde
However, the phase transition from the satellite configurat
to the weak-anchoring configuration undergoes a symm
change from dipolar to quadrupolar, represented by the s
metry groupsD`h and C`h , respectively@11#. The order
parameter of this transition can be easily identified: it is thz
componentpz of a vectorp connecting the particle and th
monopole. The expansion of the free energy in terms of
small order parameter cannot contain a cubic termpz

3 ~the
free energy is a scalar, whilepz

3 changes sign on inversion!.
Therefore, from these underlying symmetry reasons,
transition seems to be of second order. One possibility
explain the jump in the order parameter and the break p
in the energy curve at the absence of a cubic term in
Landau expansion of the free energy is to assume that
coefficient of the fourth-order term is negative and a six
order term has to be taken into account, i.e., the Lan

expansion is of the formF5 1
2 a(w2w* )pz

22 1
4 bpz

41 1
6 cpz

6 .
The transition from a Saturn ring structure, the curve (r )

in Fig. 3, seems to occur at a slightly higher value of t
control parameterw;11. At this point the combined curve
of the satellite ring and the virtual disclination inside th
particle has the valuear /R51, i.e., the loop is on the surfac
of the sphere. The radius of the ring for infinite anchoring
slightly smaller than the estimate of@2#, ar;1.13. Disclina-
tion radii of ar,1 do not represent real disclination rings b
‘‘virtual’’ disclinations inside the particle. They were fitte
using an approximate formula of the director field with
Saturn ring@2#,

b5u2
1

2
arctan

sin 2u

~ar /r !31cos 2u
. ~4!

The transition is continuous in the order parameter and
the free energy. This implies that the system undergoe
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56 5565MONTE CARLO SIMULATION OF TOPOLOGICAL . . .
second-order phase transition. Again, from symmetry ar
ments this cannot be the case: the transition from the Sa
ring is symmetry preserving. Both the ring and the we
anchoringn̂~r ! have quadrupolar symmetry and belong to t
same groupD`h . It is a well known fact that phase trans
tions with preserved symmetry must be of first order~e.g.,
gas-liquid transition!, which we do not see in our result
Therefore it seems that there is no phase transition as s
The disclination ring simply shrinks and, instead of bei
outside the sphere, a virtual ring continues to exist inside
sphere without any other changes in the system.

V. CONCLUSION

We examined the director structure around a spher
particle with a Monte Carlo simulation, depending on t
anchoring energy of the nematic at the particle surf
WR/K. In the region of strong-anchoring condition
(WR/K@10) the director structure seems to depend on
history of the sample. If a preorder of quadrupolar struct
existed, it will tend to remain in this symmetry and devel
a Saturn ring texture. If this symmetry was not existent,
a dipolar prealignment configuration was enforced, the sa
lite structure will appear. Both patterns seem to be qu
stable once they have formed and thermal fluctuations m
not be strong enough to change the state to its global m
mum, whatever it is, since the intermediate stage, a ring
of the equatorial plane, is punished by a high free ene
The question of which of the states has the lower ene
cannot be answered unambiguously. Too little is kno
about the energy inherent in the core of a disclination ring
a monopole defect to be able to give a good estimate for
additional core energy. The scaling of the Saturn ring ene
might imply that this structure is less favorable for lar
particles@3#. The conclusion that in the case of small pa
ticles the Saturn ring is preferable was also reached
Lubenskyet al. @12#. The same holds of course for wea
anchoring, for example, close to the melting point of a ne
atic liquid crystal where bubbles of isotropic material for
inside the two-phase region.
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The dipolar satellite defect texture would explain t
alignment of particles in strings along the director lines o
served in some experiments@3,13#, whereas the quadrupola
structure would lead to repulsion along the director and
traction at oblique angles@14,15# leading to less structured
aggregates also frequently observed@16#. On the other hand
the presence of other particles could distort the symme
enough to favor the dipolar structure with a ring displac
from the equator and, therefore, explain the string alignme

The simulations show a first-order phase transition from
satellite defect to the weak-anchoring field atWR/K;7 or
slightly higher. The transition from the Saturn ring to th
weak-anchoring field occurs at somewhat higher val
WR/K;11. The disclination disappears from the liqu
crystal but apparently continues to exist as a virtual r
inside the particle at any nonzeroW. From symmetry argu-
ments it can be conjectured that this change is not a
transition but rather a continuous process of decreas
ar(w).

The experimental examination of the director structu
around a colloid particle with an optical microscope is dif
cult since samples with a reasonable thickness are turbid
to the high thermal fluctuations in nematics. An appropri
method of exploring even thick samples is the method
freeze fracturing or tomography. The sample is frozen a
can be cut in thin slices in the region of interest to exam
the director structure@17#. It is particularly interesting to
examine the influence of the cooling method, cooling rat
and how symmetry breaking effects~such as the existence o
other particles, electric and magnetic fields! change the di-
rector pattern.
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